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There have been numerous approaches to modeling stem form in recent decades. The majority have concentrated
on the simpler coniferous bole form and have become increasingly complex mathematical expressions. Use of
trigonometric equations provides a s imple expression of  taper that  is  f lexible enough to f i t  both coniferous and hard-
wood bole forms.  As an i l lustrat ion,  we applied tr igonometric  taper equations to examples from thinned and unthinned
slash pine (Pinus  elliottii Engelm. var. elliottii), willow oak (Quercusphellos L.), and sweet gum (Liquidambar styrac$ua
L.).  Comparison of new tr igonometric models with a segmented-polynomial  approach developed in 1976 indicates that
equations based on tr igonometric functions perform equally well  and have real  advantages in terms of parsimony.
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II y a eu de nombreuses approches  pour modtliser la forme de la tige au tours  des dernieres  decennies.  La plupart
d’entre elles,  bien que se limitant  a la forme  plutot  simple du tronc des resineux,  se traduisent par des equations mathema-
t iques de plus  en plus  complexes.  L’ut i l isat ion d’equations  t r igonometr iques fournit  une expression simple du defi le-
ment tout en Ctant assez  flexible pour s’ajuster a la forme du tronc des resineux et des feuillus.  A titre d’exemple,
nous  avons applique des equations tr igonometriques de defi lement a des t iges de pin de Floride (Pinus  eiliottii  Engelm.
var. el l io t t i i ) ,  de chCne  Same  (Quercusphellos L.) et  de l iquidambar d’AmCrique  (Liquidambar  styraciflua  L.) prove-
nant de peuplements Cclaircis et non eclaircis.  La comparaison  des nouveaux modeles  trigonometriques avec  une approche
procedant  par segments polinomiaux developpee  en 1976 indique que les  equations bastes sur  des fonctions  t r igonomb
triques conviennent  aussi  bien et  posstdent  des avantages notables quant  a la parcimonie.
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Introduction TABLE 1. Characteristics of slash pine plantation trees
Modeling stem form mathematically has been a wide-

ranging effort in forestry. Approaches have included simple
hyperbolic expressions (Behre 1924, 1927), multiple regres-
sion on high-order polynomials (Bruce et al. 1968), com-
plicated multiexponent power equations (Demaerschalk
1973; Demaerschalk and Kozak 1977), and segmented-
polynomial equations conditioned to join smoothly (Max
and Burkhart 1976). Even some simple sine function trans-
formations for stem form were reported by Bitterlich (1976)
for use with the Relascop. Reviews of the many other taper
equations are included in several taper-related papers (e.g.,
Cao et al. 1980).

Unthinned s tands Thinned s tands

No. of trees 107 92
Mean dbh (cm) 16.8 25.4
dbh range (cm) 5.6-33.0 6.6-48.3
Mean height (m) 16.2 20.2
Height range (m) 6.1-21.7 8.8-33.5

TA B L E  2.  Characteristics of willow oak and sweet
gum trees

The purpose of this study was to examine the applicability
of trigonometric function-based taper equations and to com-
pare them with a widely recognized and flexible taper equa-
tion of well-known reliability. To demonstrate the flexibility
of the general model, we selected data that included both
simple softwood bole form and rather more complicated
hardwood bole form.

No. of trees
Mean dbh (cm)
dbh range (cm)
Mean height (m)
Height range (m)

Willow oak Sweet  gum

62 45
48.9 41.2

17.3-94.0 15.2-82.5
26.9 27.6

17.4-37.8 14.6-39.0

Materials
Taper data for slash pine (Pinus  elliottii Engelm. var. elliottii),

willow oak (Quercus phellos  L.), and sweet gum (Liquidambar
styraciflua  L.) were available to examine the performance of the
trigonometric taper equation and to compare its performance with
that of the segmented-polynomial equation of Max and Burkhart
(1976). The slash pine data are described by Lohrey (1984). Briefly,
they consist of 199 felled plantation-grown pine trees, 107 of which
were from unthinned stands and 92 from stands that had been
thinned from below. All trees were cut at a 15-cm stump height.
Diameter outside bark and diameter inside bark were measured
at 0.15, 0.6, and 1.3 m and every 1.5 m along the remainder of
the stem. Total tree height was also measured. Section volumes
inside bark were calculated using Smalian’s formula. Table 1 gives
some simple descriptive statistics on the two data sets (thinned and
unthinned).

For willow oak we obtained data from Bryce Schlaegel, USDA
Forest Service R-8 Timber Management. Data collection and
statistics are reported in Schlaegel (1981); we briefly review his
descriptions here. Data were collected from 10 natural bottomland
hardwood stands in Mississippi. Trees were chosen for destruc-
tive sampling from uneven-aged mixed-species stands. Measure-
ments were made at regular intervals along the bole. Table 2
presents some simple descriptive statistics for these data. A similar
description of data collection and statistics for sweet gum is
reported in Schlaegel(l984). Statistics for the sweet gum data are
given in our Table 2.

Methods

After some examination of the plots of unit-circle trigono-
metric functions, including nonzero centered transforma-
tions (of the form sin(x + a$) and comparison to the plots
of tree taper’ on a relative height and diameter scale, we
selected the following taper model:
[I] d2/D2  = br(x  - 1) + b2 sin(c?rx) + b3 cotan(nx/2)
where d is diameter at a given height, D is diameter at breast
height (the left-hand side of eq. 1 will also be referred to
as relative square diameter), x is the corresponding relative
height, i.e., height of observation/total height above ground,
and c is a coefficient. Arguments for trigonometric func-
tions are expressed in radians. The cotangent function yields
values from + m to 0 when x is scaled from 0 to a/2. The
initial selection of expressions of C?T (for arguments of the
sine function) were based on the interval necessary to con-
dition the sine function to assume values from - 1 to 1.
While a model that uses c = 2 performs quite well for the
hardwoods, bole form did not agree as well for the slash
pine. Therefore, we ran a series of nonlinear regressions to
determine an appropriate value for c. Values of c for the
slash pine ranged from 1.4 to 1.5, and for the hardwoods
c ranged from 1.9 to 2.2. It is possible that nonlinear fit-
ting for this additional parameter would be reasonable.
However, we found little improvement in R2 or mean
squared error over using fixed values of 1.5 for the soft-
wood and 2.0 for the hardwood.

Trigonometric functions on the unit circle have a direct
analogy to the relative height - relative diameter plots pre-
sented in many taper equations. They are limited in the
values that may be assumed to the range of - 1 to 1 for sines
and cosines and 0 to + 00  for tangents and cotangents.
Trigonometric functions have also been expressed as Taylor
series of high-order polynomials. In fact, tabulated values
for complex trigonometric functions were produced by com-
puting the values using the polynomial formulae. These
characteristics suggest that trigonometric functions might
provide a compact and simple method for expressing bole
taper. For example, the Taylor series expression for a sine
function centered at x = 0 is

The proliferation of taper models over the last 2 decades
provides a wide variety of models that could be used to com-
pare performance. Results of several applications for growth
and yield models suggested that the model of Max and
Burkhart (1976) for southern tree species was well behaved
and well tested. Their model was
[2]  d2/D2  = (b,(x  - 1) + b2(x2 - 1)

+  b3(q  - x)211  +  b&2  - x)2z2
where

I, = 1 if x < al, otherwise Ii =  0
Z2 = 1 if x < a2,  otherwise I2 =  0

sin x = (x/l!) - (x3/3!)  + (x5/5!)  + . . .
+ [( - 1y+p+  1 /(2n + l)!]  n = 1,2,3...

‘As with most model fitting, this was actually an iterative pro-
cedure,  involving examination of raw data and transformed data,
preliminary fitting of the data, and then iteratively examining plots
of residuals from a variety of trigonometric models.
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UNTHINNED SLASH PINE
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Relative Height
FIG. 1. Plot of relative height versus relative square diameter

inside bark for unthinned slash pine. Solid line represents the
trigonometric function based equation;  broken l ine represents the
Max and Burkhart  segmented-polynomial  equation.

THINNED SLASH PINE
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Reiative Height
FIG. 2. Plot of relative height versus relative square diameter

inside bark for thinned slash pine. Solid line represents the
trigonometric function based equation;  broken l ine represents the
Max and Burkhart  segmented-polynomial  equation.

and other variables are as previously defined (ai and bi are
coefficients). This provides for a three-segment polynomial,
characterized by quadratic degree for lower bole, central
bole, and top.

Results and discussion
The results will be discussed in two sections: first, the

simpler bole form of slash pine and then the more complex
bole form of willow oak. We will also present results for
sweet gum, but little discussion will be spent on it, because
it has a form very similar to that of willow oak and because
it neither required special processing or coefficients, nor pro-
duced any unusual or interesting conditions different from
the other two species.

Slash pine
We transformed the raw data to obtain relative height and

square diameter and to fit the trigonometric model using
ordinary least squares regression. As we noted earlier,
nonlinear models were run to test the value of using a

THINNED SLASH PINE
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Relative Height
FIG. 3. Plot of lower portion of bole, depicting differences

between the two model fits in this portion of the thinned slash pine
bole.  Solid l ine represents the tr igonometric function based equa-
tion; broken line represents the Max and Burkhart segmented-
polymonial  equat ion.

variable coefficient (c) for the argument of the sine func-
tion. This resulted in the selection of c = 1.5. We examined
the models from fixed and variable coefficients for the argu-
ment and found little difference between the two. Therefore,
we have chosen to report results from the simpler model,
which does not involve a variable coefficient for the sine
function and the concomitant nonlinear model fitting.

In contrast, it was necessary to use nonlinear regression
to determine the join point parameters in the Max and
Burkhart model. Figure 1 illustrates the data and computed
inside-bark taper equation lines for unthinned slash pine for
each model. The solid line represents the trigonometric func-
tion, and the broken line represents Max and Burkhart’s
model. Similarly, Fig. 2 represents the inside-bark models
for thinned slash pine. Finally, a blowup of the lower por-
tion of the bole of thinned stems is presented in Fig. 3; a
similar result was obtained for unthinned slash pine. Note
that for these figures we randomly eliminated 25% of the
observations to more clearly display the differences between
the two model lines.

After fitting the equations we plotted the residuals and
compared mean squared errors measured in the original
values for both the models. Statistics for the two models
are presented in Table 3. The fit index is a corrected coeffi-
cient of determination, the result of determining residual
values from the data as measured in the original units.

Examination of both the graphical and statistical presenta-
tions provides evidence for the similarities and minor differ-
ences between the two models. Both models differentiated
between the thinned and unthinned stem forms. Confidence
intervals about parameter values for the thirmed and tmthinned
trigonometric models did not overlap. The asymptotic con-
fidence intervals for the nonlinear models generated by SAS
Institute Inc. (1985) software product PROC NLIN overlapped
significantly. We have some serious reservations about these
nonlinear confidence intervals. However, their validity was
not germane to the trigonometric model. The trigonometric
model is more parsimonious (has fewer parameters to esti-
mate) and requires less computation in fitting the model.
The usual statistics for the two models provide little to
choose between them.
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TABLE 3. Results from the ANOVA  for regression models describing the inside-bark bole form
of thinned and unthinned slash pine

Model b, b,

Coefficient values

b, b, a,

Unthinned

a2

Statistics

SE* FI+

Trigonometr ic -0.662 0.0278 0.004 56 - - - 0.305 0.983
Max-Burkhart -4.154 1.988 -2.140 146.5 0.829 0.0545 0.291 0.984

Thinned

Trigonometr ic -0.741 0.0345 0.00391 - - - 0.444 0.987
Max-Burkhart -5.689 2.777 -3.028 223.3 0.843 0.0462 0.428 0.988

*Standard error of the estimate; expressed in the original units. Coefficients of variation about the mean volume (24 ft’
(0 .68  m3))  were  a b o u t  6 % .

‘Fit index: the expression of coefficient of determination in original units. FI = 1  - [E(d - d)*/E(d  - d)*].

It is possible that butt flare in the trigonometric model
could become extreme. This is because the cotangent goes
to + 00  at x = 0 (a transformation to the cotangent could
be used to guarantee some maximum value at ground level).
However, in our experience this concern was not warranted.
Extreme flare occurred only in the stump portion of trees,
not in the portion that would be utilized.2 In sapling-sized
trees, less than 5 cm in dbh, some strange shapes may result
from application of the trigonometric model. However, the
volume or biomass obtained from the equations are still rea-
sonable estimates; therefore shape of these small stems
should cause little practical concern.

Willow oak and sweet gum
Figure 4 illustrates the relative cross-sectional profile for

the willow oak boles. Total relative height equals 1 for all-
sized trees, and relative cross-sectional area is a proportion
of basal area at breast height. Note that actual measurements
end at stump height, not ground level. The slight bulge in the
taper curve between 50 and 80% of relative height represents
a portion of the stem (main bole) where taper slows at the
base of the live crown and then resumes at a slightly more
rapid rate within the deliquescent crown. In Fig. 4 the
trigonometric model seems to provide a slightly better fit
than the segmented-polynomial model. The statistical esti-
mates for inside-bark taper equations from both trigono-
metric and Max and Burkhart’s models are presented in
Table 4.

As with the slash pine data, differences between the over-
all statistical fits obtained are minimal. The advantages
remain in the simplicity and ease of application for the
trigonometric model. While both models are conditioned to
equal 0 at the tip of the tree, both equations may result in
very small negative diameters near the tip. Practically, this
should be of little concern. Biomass or gross volume still
integrates to yield positive values, and the small amount of
material should seldom yield unreasonable estimates of
topwood.

Conclusions
Deriving suitable inside- (or outside-) bark taper equations

can prove to be a valuable exercise. The equations can be

‘While the taper function goes to infinity, integration of the
taper function for volume or biomass does not involve an infinite
value.  Both volume and biomass integrals  give f ini te  solut ions .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Height
FIG. 4. Plot of relative height versus relative square diameter

inside bark for willow oak. Solid line represents the trigonometric
function based equation; broken line represents the Max and
Burkhart segmented-polynomial equation.

used in determining product outturns from various stand
conditions. Unthinned stands of slash pine were shown to
have different taper equations than thinned stands. Trigono-
metric function based equations yield a single solution for
any portion of the stem, while equations that have multiple
quadratic forms require solution for volumes in parts of the
tree bole that may require solving two equations. Solving
several equations is not a problem once the taper equation
is established; however, it could be a problem if new taper
coefficients are needed, e.g., when new thinning densities
are encountered, there would be six coefficients rather than
three to fit. The sine-cosine functions have a range from
- 1 to 1 and tangent-cotangent functions, from + 00  to 0,
when properly conditioned. They can be considered a par-
simonious expression of high-order polynomials.

As a number of investigators have observed, integration
of the taper equations yields a volume directly. Integration
between intermediate heights or over log lengths provides
volumes within sections of the bole. The form of the taper
equation can make this process more or less complex. Inte-
gration of the quadratic forms for different logs within the
bole means that more complex integrations may be neces-
sary. The trigonometric formulation we have used is simple
to integrate; each term in the equation can easily be solved.
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TABLE 4. Results from the ANOVA  for regression models for willow oak and sweet gum taper
coefficients

Model b, bz

Coefficient values

b3 b4  al

Willow oak

a2

Statistics

SE* FI+

Trigonometr ic - 0.569 0.0741 0.019 24 - - - 1.284 0.967
Max-Burkhart - 2.752 1.410 - 2.200 96.3 0.553 0.0982 1.228 0.970

Sweet gum
Trigonometr ic - 0.601 0.0588 0.0151 - - - 1.100 0.969
Max-Burkhart - 3.090 1.565 - 1.719 127.2 0.677 0.0800 0.970 0.976

*Standard error of the estimate; expressed in the original units. Coefficients of variation about the mean volume (24 ft’
(0.68 m3))  were about 6%.

+Fit  index: the expression of coefficient of determination in original units. FI = 1 - [C(d  - d)‘/YiZ(cf  - a)*].

This provides another worthwhile advantage over joined
quadratics.

To obtain volume, integrate over height
hu

0=k d2  dh
J h

where k is ?r  / 40 000, the factor for converting square centi-
metres to square metres; hl is the lower height limit; and h,
is the upper height limit. Performing a change of variable
from h to x (relative height) results in

0 = kH
i

x” d2 dx
XI

where His total tree height, xl is h/H,  and X,  is h,/H.  Spe-
cifically, integration yields

5
&$7 = kD2H blx  - bl + b2sin(c7rx)
Xl

+ b+ot(?rx/2) dX

0 = kD2H
I
blz (x;  - xf)  - bl(x” - x,)

- ~[cos(c*x,)  - cos(c7rx,)]

where In is the natural logarithm and c = 1.5 for slash pine
and 2.0 for willow oak and sweet gum.

Integration of the segmented-polynomial equations is pos-
sible; however, the solutions are considerably more com-
plex, always involving the integration of two equations in
the butt log.

A final remark about inversion of the trigonometric form
may be useful. The formulation we have solved is in terms
of diameter inside (or outside) bark. It may occasionally be
convenient to obtain a height to a known upper stem diam-
eter. It is not obvious how to invert eq. 1 mathematically.
It may be possible to invert the equation if the range of the
sine and cotangent is limited. However, it is trivial to obtain
the inverted solution using a simple iterative numerical tech-
nique, such as Newton-Raphson. Obtaining the derivative
of the trigonometric equation is simple, which facilitates the
numeric solution.

In previous publications, we have advocated a double-
integral (density-volume) approach to determining weight
or biomass of tree boles (e.g., Parresol and Thomas 1989).
In those publications, we used simple taper equations to
illustrate the method. This new taper equation should improve
on the predictions when compared with predictions from
prior taper models that we have used. We did not attempt
to analyze differences between thinned and unthinned stands
that might have resulted from tree size differences between
the two conditions. This problem often occurs in thinning
studies and is not easily resolved, and we feel, it is a topic
worthy of treatment in its own right. In our study of bole
forms for both hardwood and softwoods, trigonometric
functions provide impressive flexibility, parsimony, and
potential utility. For these reasons, we suggest that trigono-
metric functions be considered for developing and apply-
ing taper functions for many species.
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